

WVIDIA.

NVIDIA Wireless LAN

Introduction of Digital Radio Ed Liu

Current WLAN Implementation Analog Radio

Future WLAN Implementation Digital Radio

Digital Radio

- Lower Cost
- Higher Performance
- Simpler Assembly
- Printed Antenna
- Lower Power

New Solution with Digital Radio

RF Module Cross-section View

Zero-Loss Digital Cable Enables Flexible Placement

Simpler Assembly, Better Matching

Summary - Digital Radio Ideal for Laptops

- At back of LCD screen, Digital Radio has
 - Better reception
 - Less CPU heat
 - Less noise
 - Less vibration from fan
- Increase range and lower costs
 - Digital cable has no signal loss and costs less
- Printed antenna easy to manufacture
- Flexible antenna placement

WVIDIA.

FCC Certifications 5/23/05

What Do We Plan To Certify

- We plan to certify RF module and BBP/MAC FPGA together as a "partitioned module"
- The goal is to have a single certified RF module that can work with same BBP/MAC embedded in different systems and physical implementations
 - Enables early FCC certification so that product development cycle is reduced for overall system
 - Reduces need to re-certify systems even when same BBP/MAC implemented in different chips. Many system chips have variations in portions not related to wireless

Can We Approve RF Module as Modular Transmitter

- Currently, DA 00-1407 requires that
 - Only modulation data can be input to modular transmitter
 - Control signals cannot be input
- Traditionally, only miniPCI, Cardbus, or USB interface satisfies this requirement
- This forces BBP/MAC to reside on the RF module
- With latest digital technology, it is lower cost and power to embed BBP/MAC into another system
- Applications include laptops and cell phones

How to Ensure Noise Immunity of Data Lines between RF and FPGA

- Robust electrical signaling
 - Adopted JC61 (HyperTransport) electrical signaling
 - HyperTransport has been used in all existing AMD processors being shipped
- Real-time, self-check capability for data lines to detect critical link errors

JC61 Electrical Characteristics

- 100 ohm impedance
- Differential signaling
- 0.6V common-mode, 0.6Vpp swing

Data Link Self-Check Capability

- Critical radio control from BBP/MAC performed via register programming command
 - Tx, Rx, Idle mode selection
 - Channel selection
 - Power level selection
 - Antenna selection
- When each command completes, the radio will echo the command back to BBP/MAC for verification
- BBP/MAC will check for the echo and make sure it matches with the original command
- If not, then BBP/MAC knows there is a link error and will power down radio and perform system reset

Means to Ensure Specific FPGA Implementation Matches with RF Module

- FPGA will verify device ID on RF chip at initialization
- The JC-61 committee has approved an industry wide standard for a digital interface between radio frontend and digital radio controller
- The JC-61 standard defines a 4 byte value separated into a 2 byte manufacturer's JEDEC-assigned ID code and a 2 byte device type

Means to Inject Errors into Digital Link for Robustness Test

- Robustness of digital link can be checked by injecting random bit errors
- Because BBP/MAC controls radio, link direction from BBP/MAC to radio is most important
- A random bit error can be injected using an XOR circuit on the BBP/MAC
- D is normal data from BBP/MAC to radio. If E is enabled randomly from an external source, the XOR circuit flips the polarity of the bit, D, randomly to produce corrupted output T for transmission to radio

Schematic Block diagram

Physical Diagram of Rack

